Вторичная электронная эмиссия - definitie. Wat is Вторичная электронная эмиссия
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Вторичная электронная эмиссия - definitie


ВТОРИЧНАЯ ЭЛЕКТРОННАЯ ЭМИССИЯ         
испускание электронов (вторичных) твердыми и жидкими телами при бомбардировке их поверхности первичными электронами. Используется для усиления электронных потоков в электрических вакуумных приборах, напр., в фотоэлектронных умножителях.
Вторичная электронная эмиссия         

испускание электронов поверхностью твёрдого тела при её бомбардировке электронами. Открыта в 1902 немецкими физиками Аустином и Г. Штарке. Электроны, бомбардирующие тело, называются первичными, испущенные - вторичными. Часть первичных электронов отражается телом без потери энергии (упруго отражённые первичные электроны), остальные - с потерями энергии (неупруго отражённые электроны), расходуемой в основном на возбуждение электронов твёрдого тела (См. Твёрдое тело), переходящих на более высокие уровни энергии. Если их энергия и импульс оказываются достаточно большими для преодоления потенциального барьера на поверхности тела, то электроны покидают поверхность тела (истинно вторичные электроны). Все три группы электронов присутствуют в регистрируемом потоке вторичных электронов (рис. 1).

В тонких плёнках В. э. э. наблюдается не только с той поверхности, которая подвергается бомбардировке (эмиссия на отражение, рис. 2, а), но и с противоположной поверхности (эмиссия на прострел, рис. 2, б).

Количественно В. э. э. характеризуется коэффициентом В. э. э. σ = iвт/iп , где - iвт ток, образованный вторичными электронами, iп - ток первичных электронов, коэффициент упругого r = ir/iп и неупругого η = iη/iп отражения электронов, а также коэффициентом эмиссии истинно вторичных электронов δ = iδ/iп (ir, iη, iδ - токи, соответствующие упруго отражённым, неупруго отражённым и истинно вторичным электронам, iвт = ir + iδ + iδ).

Коэффициент σ, r, η и δ зависят как от энергии первичных электронов Eп и угла их падения, так и от химического состава, метода изготовления и состояния поверхности облучаемого образца. В металлах (См. Металлы), где плотность электронов проводимости велика, образовавшиеся вторичные электроны имеют малую вероятность выйти наружу. В диэлектриках (См. Диэлектрики), где концентрация электронов проводимости мала, вероятность выхода вторичных электронов больше. Вместе с тем вероятность выхода электронов зависит от высоты потенциального барьера (См. Потенциальный барьер) на поверхности. В результате у ряда неметаллических веществ (окислы щёлочноземельных металлов, щёлочногалоидные соединения) σ > 1 (рис. 3). У специально изготовленных эффективных эмиттеров (интерметаллические соединения типа сурьмянощелочных металлов, спецтальным образом активированные сплавы CuAlMg, AgAlMg, AgAlMgZi и др.) σ 1. У металлов же и собственных полупроводников (См. Полупроводники) значение сравнительно невелико (рис. 4). У углерода (сажи) и окислов переходных металлов σ < 1 ,и они могут применяться как антиэмиссионные покрытия.

С увеличением энергии Eп первичных электронов σ сначала возрастает (рис. 3, 4). Это происходит до тех пор, пока возбуждение электронов тела происходит вблизи поверхности на расстоянии меньшем, чем их длина пробега. При дальнейшем росте Eп общее число возбуждённых электронов продолжает расти, но основная часть их рождается на большей глубине и число электронов, выходящих наружу, уменьшается. Аналогично объясняется рост σ с увеличением угла падения пучка первичных электронов.

Монокристаллы анизотропны по отношению к движению электронов (см. Анизотропия). При движении электронов вдоль каналов, образуемых плотно упакованными цепочками атомов, вероятность рассеяния электронов и ионизации атомов повышается (каналирование). Наблюдается также дифракция электронов в кристаллической решётке. В результате этого зависимости σ, η и r от угла падения первичных электронов и кривые σ (Eп), r (Eп) и η(Eп) для монокристаллов имеют сложную форму с рядом максимумов и минимумов (рис. 5).

Приводимые для поликристаллов коэффициенты σ, η, r, δ обычно представляют собой величины, усреднённые по различным направлениям.

В. э. э. реализуется за время, меньшее чем 10-12 сек, т. е. является практически безынерционным процессом.

Самостоятельное значение получило исследование и применение В. э. э. в сильных электростатических полях и электрических полях сверхвысоких частот. Создание в диэлектрике сильного электрического поля (105-106 в|см) приводит к увеличению σ до 50-100 (вторичная электронная эмиссия, усиленная полем). Кроме того, в этом случае величина σ существенно зависит от пористости диэлектрического слоя, так как наличие пор увеличивает эффективную поверхность эмиттера, а поле способствует "вытягиванию" медленных вторичных электронов, которые, ударяясь о стенки пор, могут вызвать, в свою очередь, В. э. э. с σ > 1 и возникновение электронных лавин. Развитие лавин при определённых условиях приводит к самоподдерживающейся холодной эмиссии, продолжающейся в течение многих часов после прекращения бомбардировки электронами.

В. э. э. применяется во многих электровакуумных приборах для усиления электронных потоков (фотоэлектронные умножители (См. Фотоэлектронный умножитель), усилители изображений и т. д.) и для записи информации в виде потенциального рельефа на поверхности диэлектрика (Электроннолучевые приборы). В ряде приборов В. э. э. является "вредным" эффектом (динатронный эффект в электронных лампах (См. Электронная лампа), появление электрического заряда на поверхности стекла и диэлектриков в электровакуумных приборах (См. Электровакуумные приборы)).

В высокочастотном электрическом поле E = E0cosωt, вследствие В. э. э., на поверхностях электродов наблюдается явление лавинообразного размножения электронов (вторично-электронный резонанс). Это явление открыто Х. Э. Фарнсуортом в 1934. Для возникновения резонанса необходимо, чтобы время между двумя последовательными соударениями электронов с поверхностями электродов (рис. 6, а) было равно нечётному числу полупериодов высокочастотного поля Е (условия синхронизма). При этом электроны могут приобрести в поле энергию, при которой σ > 1. Размножение электронов происходит на поверхностях двух электродов, между которыми приложено высокочастотное электрическое поле, или на одной поверхности, помещённой в скрещенные электрическое и магнитное поля (рис. 6, б). Быстрое нарастание концентрации электронов ограничивается ростом пространственного заряда, что нарушает условие синхронизма. Явление вторичного электронного резонанса играет существенную роль в механизме возникновения плотного прикатодного объёмного заряда в Магнетронах и Амплитронах, а также в механизме работы динамических фотоэлектронных умножителей. С другой стороны, это явление может быть причиной нестабильной работы этих приборов и может ограничивать их выходную мощность.

Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Брюининг Г., Физика и применение вторичной электронной эмиссии, пер. с англ., М., 1958; Браун С., Элементарные процессы в плазме газового разряда, М., 1961; Гавичев Д. А. [и др.], Исследование резонансного высокочастотного разряда в скрещенных полях, "Журнал технической физики", 1965, т. 35, с. 813.

А. Р. Шульман.

Рис. 1. Распределение вторичных электронов по энергиям: I - упруго отражённые электроны, II - неупруго отражённые электроны, III - coбственно вторичные электроны; Еп - энергия первичных электронов.

Рис. 2. Вторичная электронная эмиссия на отражение (а) и на прострел (б).

Рис. 3. Зависимость коэффициента вторичной электронной эмиссии σ от энергии первичных электронов Еп.

Рис. 4. Зависимость коэффициентов σ и η от энергии первичных электронов Еп для некоторых металлов.

Рис. 5. Зависимость σ, η и r от угла падения φ первичных электронов для монокристаллов кремния; Еп = 1000 эв; пунктир - зависимость σ (φ) для плёнки кремния.

Рис. 6. Размножение электронов в высокочастотном электрическом поле (а) и в скрещенных электрическом Е и магнитном Н полях (б). Поле Н перпендикулярно плоскости чертежа; стрелками показаны траектории электронов.

Вторичная электронная эмиссия         
Втори́чная электро́нная эми́ссия — испускание электронов (электронная эмиссия) поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов (первичными электронами) с энергией, превышающей некоторую пороговую. Иными словами это эмиссия электронов, входивших в состав образца и получивших от падающих электронов достаточно энергии для выхода из образца.

Wikipedia

Вторичная электронная эмиссия

Втори́чная электро́нная эми́ссия — испускание электронов (электронная эмиссия) поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов (первичными электронами) с энергией, превышающей некоторую пороговую. Иными словами это эмиссия электронов, входивших в состав образца и получивших от падающих электронов достаточно энергии для выхода из образца.

Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами.

В достаточно тонких плёнках длина пробега первичных электронов может превышать толщину этой плёнки (эмиттера). В этом случае вторичная электронная эмиссия наблюдается как с поверхности, подвергаемой бомбардировке (вторичная электронная эмиссия на отражение), так и с противоположной поверхности (вторичная электронная эмиссия на прострел). Поток вторичных электронов складывается из отражённых (упруго и неупругого) первичных электронов и истинных (собственных) вторичных электронов — электронов эмиттера, получивших в результате их возбуждения первичными энергию и импульс, достаточные для выхода в вакуум.

Вторичные электроны имеют непрерывный энергетический спектр от 0 до энергии первичных электронов. Обычно энергетический спектр электронов имеет ряд максимумов и минимумов, так называемая тонкая структура энергетического спектра, обусловленная характеристическими потерями энергии на возбуждение атомов вещества и Оже-эффектом.

Механизм упругого отражения электронов существенно различен в области малых (0—100 эВ), средних (0,1—1 кэВ) и больших (1—100 кэВ) энергий первичных электронов.

Отношение числа вторичных электронов n 2 {\displaystyle n_{2}} к числу первичных n 1 {\displaystyle n_{1}} , вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:

δ = n 2 / n 1 . {\displaystyle \delta =n_{2}/n_{1}.}

Коэффициент δ {\displaystyle \delta } зависит от природы облучаемого материала, состояния его поверхности, энергии бомбардирующих частиц и их угла падения на поверхность.

У полупроводников и диэлектриков δ {\displaystyle \delta } больше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, возбуждённые вторичные электроны, часто сталкиваясь с другими электронами, быстро теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.

Wat is ВТОРИЧНАЯ ЭЛЕКТРОННАЯ ЭМИССИЯ - definition